How to contribute to PHP

Gina Peter Banyard (she/her)

February 15th 2024
The PHP Foundation

Where to find these slides

https://gpb.moe/doc/slides/phpuk24.pdf

https://gpb.moe/doc/slides/phpuk24.pdf
https://gpb.moe/doc/slides/phpuk24.pdf

Before we begin

« Create a new folder phpuk24 and subfolder custom-php
 Clone the php/php-src git repo into phpuk24
o cd into the cloned repo and run ./buildconf followed by:

e« ./configure -C CC=gcc CFLAGS="-DZEND RC DEBUG=1
-DZEND VERIFY FUNC INFO=1 -DZEND TRACK ARENA ALLOC=1
-ggdb3" --disable-all --enable-address-sanitizer \
--enable-undefined-sanitizer --enable-debug \

--enable-tokenizer --prefix /path/to/phpuk24/custom-php/
Finally, make -j$(getconf NPROCESSORS ONLN)

https://github.com/php/php-src

o Studied pure mathematics at ICL
« Working on PHP since 2018

o Started with documentation
The PHP o First RFC and php-src contribu-
tions in 2019

 Paid by Foundation from April
2022
« No formal education in C

Foundation

Different way of contributing to PHP:

The PHP documentation

The php.net website

Writing and improving tests for PHP
PECL extensions

Bundled extensions
PHP itself

The PHP documentation

Written in XML following the DocBook standard.

English language sources available on GitHub in the php/doc-en and
php/doc-base repo.

A tutorial on how to contribute exists on http://doc.php.net/
tutorial/

It is also possible to contribute to one of the existing translations (e.g.
php/doc-fr)

https://github.com/php/doc-en
https://github.com/php/doc-base
http://doc.php.net/tutorial/
http://doc.php.net/tutorial/
https://github.com/php/doc-fr

The PHP documentation

The php/doc-base repo contains the configure.php script that prepares
the manual from the manual.xml. in skeleton.

Moreover, the docs must have the following directory structure:

php-doc/base/
/en/
/fr/

It also contains various QA scripts that could be enhanced!

https://github.com/php/doc-base

The PHP documentation: PhD

The manual is rendered via our custom render written in PHP named
PhD.

It handles the indexing, search, and automatic linking for <function>,
<classname>, and <methodname> tags. (Sadly no support for <constant>
yet.) It is invoked with:

php -dmemory limit="1024M" ./phd/render.php -P PHP -d ./
base/.manual.xml -f xhtml -f bigxhtml -f php -f tocfeed --
output ./output bightml -r

https://github.com/php/phd

The php.net website

The website is also open source, and can be found in the php/web-php
git repo on GitHub.

This also contains the CSS for the whole website and the rendered
documentation.

https://github.com/php/web-php

PHP and its extensions are tested via PHPT test files

How these files are formatted is described on the PHP QA website:
https://ga.php.net/phpt details.php

Code coverage for PHP and bundled extension can be found on
Codecov: https://app.codecov.io/github/php/php-src/

Handy feature, failed tests generate a . sh file that can be executed with
a gdb argument to launch the test with GDB

https://qa.php.net/phpt_details.php
https://app.codecov.io/github/php/php-src/

PECL and Bundled extensions

« Mostly written in C and C++ (but Rust is also possible)

 Provides most of PHP’s functionality (e.g. ext/curl, ext/standard,
ext/opcache)

« Can do stuff not possible (yet?) in userland (e.g. operator overloading,
overloading casting behaviour)

10

PHP itself, a.k.a. Zend Engine

Written in C
Compiler/lexer/AST
VM and opcodes

Optimizer
Engine APIs for extensions (e.g. ZPP)

11

Resources to write C for PHP

LXR https://heap.space

PHP Internals Book www.phpinternalsbook.com

Zend Tutorial www.zend.com/resources/writing-php-extensions
Outdated Engine API docs https://phpinternals.net/

Thomas Weinert’s Extension Samples GitHub repo

12

https://heap.space
https://www.phpinternalsbook.com
https://www.zend.com/resources/writing-php-extensions
https://phpinternals.net/
https://github.com/ThomasWeinert/php-extension-sample

For any and all repos

Helping with issue triage:
« Confirming the issue is valid
o Simplifying the script reproducing the issue

13

A note on internals and RFCs

Internals is a mailing list that has an etiquette, such as no top posting.

Use https://externals.io/ to search prior discussions

The PHP RFC Codex repo has a summary of discussions of various RFC

ideas and how to behave on it to reduce friction.

Writing an RFC takes time and can be exhausting.

14

https://externals.io/
https://github.com/Danack/RfcCodex/

What we will work on

Creating an extension that provides the
rational numbers Q

Creating our extension

1. make install

2. php ./php-src/ext/ext skel.php --dir ../ --ext rationals \
--author "Name"

3. cd ../rationals
4. phpize
5. ./configure --with-php-config=/path/to/phpuk24/custom-php/

bin/php-config CFLAGS="-fsanitize=address -
fsanitize=undefined"

6. make test TEST PHP ARGS="-j$(getconf NPROCESSORS ONLN) -q"

17

7% It works! 75

Look around the files of the generated extension skeleton:
rationals.c

rationals.stub.php

rationals arginfo.h
The tests/ folder

18

Let's define our class

o Add the RationalNumber class to our stub file
o Create a test which checks the class exist
« Execute make test

Make test which will do make which itself will run the . /build/
gen_stub.php script to generate the arginfo header.

19

Let's define our class

The arginfo file now has a register class RationalNumber function
To register our class, we need to store the class entry somewhere:

static zend class entry *zend ce rational number;

20

Let's define our class

PHP MINIT FUNCTION(rationals)
{

zend ce rational number = register class RationalNumber();
return SUCCESS;

}

And modify the rationals module entry struct to have the
PHP MINIT(rationals)

21

Let's add a constructor!

PHP METHOD (RationalNumber, construct)
{

zend long numerator;

zend long denominator;

ZEND PARSE PARAMETERS START(2, 2)
Z PARAM LONG(numerator)
Z PARAM LONG(denominator)

ZEND PARSE PARAMETERS END();

}

Yl

Let's set the values

zval *this z = ZEND THIS;
zend object *this obj = Z 0BJ P(this z);

zend update property long(zend ce rational number, this obj,
"numerator", strlen("numerator"), numerator);

zend update property long(zend ce rational number, this obj,
"denominator", strlen("denominator"), denominator);

23

A 0 denominator makes no sense

1f (denominator == 0) {
zend argument value error(2, "cannot be 0");
RETURN THROWS() ;

}

24

Let's add useful methods

« Add an add method to the stubs

« Z PARAM OBJ OF CLASS(zend obj ptr, zend ce rational number)
or Z PARAM OBJ OF CLASS OR LONG() ZPP macro

« zval *return value is defined and initialized to IS NULL for every
method/function.

e Object init ex(return value, zend ce rational number);

 Use zend read property() function to read property

Z LVAL P(ptr) access the value of a zval *ptr which is IS LONG

23

Extract common setting code

static void set rational(zend object *obj, zend long num,
zend long denominator) {
// Common code

}

26

Write more methods

Subtraction

Multiplication

Division

Modulo

Exponentiation (%)w where x integer

Absolute value

27

Adding operator overloading support

Adding custom object handlers:
static zend object handlers rational object handlers;

In MINIT:

zend ce rational number->default object handlers =
&rational object handlers;

memcpy (&rational object handlers, &std object handlers,
sizeof(zend object handlers));

28

Adding operator overloading support

rational object handlers.do operation =
rational do operation;

28

Writing the handler

static zend result rational do operation(uint8 t opcode, zval
*result, zval *opl, zval *op2)

The opcode is the VM opcode, if the opcode is supported return SUCCESS
otherwise FAILURE.

Examples of opcode ZEND ADD, ZEND BW OR, ZEND POW

29

Careful with op1 and op2

The op zvals might not be objects, nor objects of the correct type:

$object + $string;
$array + $object;

Z TYPE P(zval) == IS OBJECT && instanceof function(
Z OBJCE P(zval), zend ce rational number)

30

Writing the handler

Binary assign op needs special treatment:

zval opl copy;

if (result == opl) {
ZVAL COPY VALUE(&opl copy, opl);
opl = &opl copy;

}

// CODE

if (opl == &opl copy) { zval ptr dtor(opl); }

31

Adding a compare method

« Return a negative number if self is less than other, 0 if equal, and a
positive one if greater than other (bonus normalise to —1/0/1)

1 ____ 2
Note 5 —— 7

static zend long gcd(zend long opl, zend long op2) {
return (opl % op2) ? gcd(op2, opl % op2) : op2;
}

32

Overloading the comparison operators

static int rational compare(zval *opl, zval *op2) {}

And in MININT

rational object handlers.compare = rational compare;

Note: Same problems with zval ops can happen as the do_operation
handler

33

[have uploaded “solutions” to this workshop on GitHub’

34

https://github.com/Girgias/phpuk24

Extra challenges

While using LXR/heap.space, can you implement:

 Overloading the casting behaviour (float, bool, string)

« Add a function rational sum(array $rationals): RationalNumber
« Parsing a string (e.g. "5/48") into a RationalNumber

35

Thank you!

