
How to contribute to PHP

Gina Peter Banyard (she/her)

February 15th 2024
The PHP Foundation

Where to find these slides

https://gpb.moe/doc/slides/phpuk24.pdf

2

https://gpb.moe/doc/slides/phpuk24.pdf
https://gpb.moe/doc/slides/phpuk24.pdf

Before we begin

• Create a new folder phpuk24 and subfolder custom-php
• Clone the php/php-src git repo into phpuk24
• cd into the cloned repo and run ./buildconf followed by:
• ./configure -C CC=gcc CFLAGS="-DZEND_RC_DEBUG=1
-DZEND_VERIFY_FUNC_INFO=1 -DZEND_TRACK_ARENA_ALLOC=1
-ggdb3" --disable-all --enable-address-sanitizer \
--enable-undefined-sanitizer --enable-debug \
--enable-tokenizer --prefix /path/to/phpuk24/custom-php/

• Finally, make -j$(getconf _NPROCESSORS_ONLN)

3

https://github.com/php/php-src

Who am I

• Studied pure mathematics at ICL
• Working on PHP since 2018

• Started with documentation
• First RFC and php-src contribu-

tions in 2019
• Paid by Foundation from April

2022
• No formal education in C

4

Different way of contributing to PHP:

• The PHP documentation
• The php.net website
• Writing and improving tests for PHP
• PECL extensions
• Bundled extensions
• PHP itself

5

The PHP documentation

Written in XML following the DocBook standard.

English language sources available on GitHub in the php/doc-en and
php/doc-base repo.

A tutorial on how to contribute exists on http://doc.php.net/
tutorial/

It is also possible to contribute to one of the existing translations (e.g.
php/doc-fr)

6

https://github.com/php/doc-en
https://github.com/php/doc-base
http://doc.php.net/tutorial/
http://doc.php.net/tutorial/
https://github.com/php/doc-fr

The PHP documentation

The php/doc-base repo contains the configure.php script that prepares
the manual from the manual.xml.in skeleton.

Moreover, the docs must have the following directory structure:

php-doc/base/
 /en/
 /fr/

It also contains various QA scripts that could be enhanced!

6

https://github.com/php/doc-base

The PHP documentation: PhD

The manual is rendered via our custom render written in PHP named
PhD.

It handles the indexing, search, and automatic linking for <function>,
<classname>, and <methodname> tags. (Sadly no support for <constant>
yet.) It is invoked with:

php -dmemory_limit="1024M" ./phd/render.php -P PHP -d ./
base/.manual.xml -f xhtml -f bigxhtml -f php -f tocfeed --
output ./output_bightml -r

7

https://github.com/php/phd

The php.net website

The website is also open source, and can be found in the php/web-php
git repo on GitHub.

This also contains the CSS for the whole website and the rendered
documentation.

8

https://github.com/php/web-php

Tests

PHP and its extensions are tested via PHPT test files

How these files are formatted is described on the PHP QA website:
https://qa.php.net/phpt_details.php

Code coverage for PHP and bundled extension can be found on
Codecov: https://app.codecov.io/github/php/php-src/

Handy feature, failed tests generate a .sh file that can be executed with
a gdb argument to launch the test with GDB

9

https://qa.php.net/phpt_details.php
https://app.codecov.io/github/php/php-src/

PECL and Bundled extensions

• Mostly written in C and C++ (but Rust is also possible)
• Provides most of PHP’s functionality (e.g. ext/curl, ext/standard,
ext/opcache)

• Can do stuff not possible (yet?) in userland (e.g. operator overloading,
overloading casting behaviour)

10

PHP itself, a.k.a. Zend Engine

• Written in C
• Compiler/lexer/AST
• VM and opcodes
• Optimizer
• Engine APIs for extensions (e.g. ZPP)

11

Resources to write C for PHP

LXR https://heap.space
PHP Internals Book www.phpinternalsbook.com
Zend Tutorial www.zend.com/resources/writing-php-extensions
Outdated Engine API docs https://phpinternals.net/
Thomas Weinert’s Extension Samples GitHub repo

12

https://heap.space
https://www.phpinternalsbook.com
https://www.zend.com/resources/writing-php-extensions
https://phpinternals.net/
https://github.com/ThomasWeinert/php-extension-sample

For any and all repos

Helping with issue triage:
• Confirming the issue is valid
• Simplifying the script reproducing the issue

13

A note on internals and RFCs

Internals is a mailing list that has an etiquette, such as no top posting.

Use https://externals.io/ to search prior discussions

The PHP RFC Codex repo has a summary of discussions of various RFC
ideas and how to behave on it to reduce friction.

Writing an RFC takes time and can be exhausting.

14

https://externals.io/
https://github.com/Danack/RfcCodex/

What we will work on

Creating an extension that provides the
rational numbers ℚ

Creating our extension

1. make install
2. php ./php-src/ext/ext_skel.php --dir ../ --ext rationals \

--author "Name"
3. cd ../rationals
4. phpize
5. ./configure --with-php-config=/path/to/phpuk24/custom-php/

bin/php-config CFLAGS="-fsanitize=address -
fsanitize=undefined"

6. make test TEST_PHP_ARGS="-j$(getconf _NPROCESSORS_ONLN) -q"

17

🎉 It works! 🎉

Look around the files of the generated extension skeleton:
• rationals.c
• rationals.stub.php
• rationals_arginfo.h
• The tests/ folder

18

Let's define our class

• Add the RationalNumber class to our stub file
• Create a test which checks the class exist
• Execute make test

Make test which will do make which itself will run the ./build/
gen_stub.php script to generate the arginfo header.

19

Let's define our class

The arginfo file now has a register_class_RationalNumber function

To register our class, we need to store the class entry somewhere:

static zend_class_entry *zend_ce_rational_number;

20

Let's define our class

PHP_MINIT_FUNCTION(rationals)
{
 zend_ce_rational_number = register_class_RationalNumber();
 return SUCCESS;
}

And modify the rationals_module_entry struct to have the
PHP_MINIT(rationals)

21

Let's add a constructor!

PHP_METHOD(RationalNumber, __construct)
{
 zend_long numerator;
 zend_long denominator;

 ZEND_PARSE_PARAMETERS_START(2, 2)
 Z_PARAM_LONG(numerator)
 Z_PARAM_LONG(denominator)
 ZEND_PARSE_PARAMETERS_END();
}

22

Let's set the values

zval *this_z = ZEND_THIS;
zend_object *this_obj = Z_OBJ_P(this_z);

zend_update_property_long(zend_ce_rational_number, this_obj,
"numerator", strlen("numerator"), numerator);
zend_update_property_long(zend_ce_rational_number, this_obj,
"denominator", strlen("denominator"), denominator);

23

A 0 denominator makes no sense

if (denominator == 0) {
 zend_argument_value_error(2, "cannot be 0");
 RETURN_THROWS();
}

24

Let's add useful methods

• Add an add method to the stubs
• Z_PARAM_OBJ_OF_CLASS(zend_obj_ptr, zend_ce_rational_number)

or Z_PARAM_OBJ_OF_CLASS_OR_LONG() ZPP macro
• zval *return_value is defined and initialized to IS_NULL for every

method/function.
• object_init_ex(return_value, zend_ce_rational_number);
• Use zend_read_property() function to read property
• Z_LVAL_P(ptr) access the value of a zval *ptr which is IS_LONG

25

Extract common setting code

static void set_rational(zend_object *obj, zend_long num,
zend_long denominator) {
 // Common code
}

26

Write more methods

• Subtraction
• Multiplication
• Division
• Modulo
• Exponentiation (𝑎𝑏)

𝑥 where 𝑥 integer
• Absolute value

27

Adding operator overloading support

Adding custom object handlers:

static zend_object_handlers rational_object_handlers;

In MINIT:

zend_ce_rational_number->default_object_handlers =
&rational_object_handlers;
memcpy(&rational_object_handlers, &std_object_handlers,
sizeof(zend_object_handlers));

28

Adding operator overloading support

rational_object_handlers.do_operation =
rational_do_operation;

28

Writing the handler

static zend_result rational_do_operation(uint8_t opcode, zval
*result, zval *op1, zval *op2)

The opcode is the VM opcode, if the opcode is supported return SUCCESS
otherwise FAILURE.

Examples of opcode ZEND_ADD, ZEND_BW_OR, ZEND_POW

29

Careful with op1 and op2

The op zvals might not be objects, nor objects of the correct type:

$object + $string;
$array + $object;

Z_TYPE_P(zval) == IS_OBJECT && instanceof_function(
 Z_OBJCE_P(zval), zend_ce_rational_number)

30

Writing the handler

Binary assign op needs special treatment:

zval op1_copy;
if (result == op1) {
 ZVAL_COPY_VALUE(&op1_copy, op1);
 op1 = &op1_copy;
}
// CODE
if (op1 == &op1_copy) { zval_ptr_dtor(op1); }

31

Adding a compare method

• Return a negative number if self is less than other, 0 if equal, and a
positive one if greater than other (bonus normalise to −1/0/1)

• Note 12 ==
2
4

static zend_long gcd(zend_long op1, zend_long op2) {
 return (op1 % op2) ? gcd(op2, op1 % op2) : op2;
}

32

Overloading the comparison operators

static int rational_compare(zval *op1, zval *op2) {}

And in MININT

rational_object_handlers.compare = rational_compare;

Note: Same problems with zval ops can happen as the do_operation
handler

33

Solutions

I have uploaded “solutions” to this workshop on GitHub’

34

https://github.com/Girgias/phpuk24

Extra challenges

While using LXR/heap.space, can you implement:
• Overloading the casting behaviour (float, bool, string)
• Add a function rational_sum(array $rationals): RationalNumber
• Parsing a string (e.g. "5/48") into a RationalNumber

35

Thank you!

